
© CMC Media 2008© CMC Media 2008

Lean Release Management

Moderator 

Megan O’Meara
Editor – CM Crossroads 

Speakers 

Martin Fowler - Chief Scientist, ThoughtWorks

Jez Humble - Cruise Product Manager, ThoughtWorks

CM Crossroads Webcast Series



© CMC Media Inc. 2008© CMC Media Inc. 2008

Martin Fowler

Martin Fowler is the Chief Scientist at 
ThoughtWorks. A part of ThoughtWorks since 1999, 
Martin Fowler is a renowned international speaker 
on software architecture, specializing in object-
oriented analysis and design, UML, patterns, and 
agile software development methodologies. 
Martin Fowler started working with software in the 
early 80's and has written five popular books on the 
topic of software development. He has also served 
on program committees for OOPSLA, Software 
Development, UML World, XP 2001, and TOOLS. 



© CMC Media Inc. 2008© CMC Media Inc. 2008

Jez Humble

Jez is the Product Manager for Cruise, ThoughtWorks’s 
new Continuous Integration and Release Management 
software. As the founding leader of ThoughtWorks' build 
and deployment community, he has worked hard to 
capture and propagate best practices in the build, test and 
deployment space. His goal is to make Cruise the number 
one commercial continuous integration and release 
management server. 

Jez has over eight years of professional experience in IT 
as a developer, system administrator, trainer and 
manager. He has worked with a variety of platforms and 
technologies, consulting for non-profits, telecoms, 
financial service and insurance service organizations. 
Since 2004 he has worked for ThoughtWorks in London 
and Bangalore and currently lives in Beijing. He holds a 
BA in Physics and Philosophy from Oxford University and 
an MMus in Ethnomusicology from the School of Oriental 
and African Studies, University of London. 



thoughtworks.com/cruise

Lean Release Management

Martin Fowler

Jez Humble

28 July 2008

© ThoughtWorks 2008



thoughtworks.com/cruise

What is release management? What is lean? 

Principles of lean applied to release management.

Practices derived from the principles.

Cruise and how it helps.

What will we talk about?

© ThoughtWorks 2008



thoughtworks.com/cruise

Getting software in a state where you are making money from it

As opposed to functionally complete and tested

Problem:

You’re not done and you don’t know when you will be

Your software isn’t earning you money

Your developers aren’t working on something new

What is release management?

© ThoughtWorks 2008



thoughtworks.com/cruise

Toyota Production System originally developed by Toyota:

“All we are doing is looking at the time line, from the point the 
customer gives us an order to the point when we collect the 
cash. And we are reducing the time line by reducing the non-
value-added wastes.”

- Taiichi Ohno

Invented to manage complex processes;

Toyota Product Development System.

What is lean?

© ThoughtWorks 2008



thoughtworks.com/cruise

Lean product development is designed to optimise for:

– Frequent releases

– Short development time

– Adaptability in design, schedule and cost targets

– Continuous improvement in quality, process, productivity and 
development time

Release management often appears to be the highest risk 
activity

Why should you care?

© ThoughtWorks 2008



thoughtworks.com/cruise

Eliminate waste

Build quality in

Amplify knowledge

Defer commitment

Deliver fast

Respect people

Optimise the whole

Taken from Lean Software Development: An Agile Toolkit, Poppendieck (Addison Wesley, 2003)

Seven principles of lean software development

© ThoughtWorks 2008



thoughtworks.com/cruise

If it isn’t delivering value to your users, it isn’t done

First find waste: map your value stream

Look for delays and queues

Anything that gets in the way of deployed code

How long is your cycle time?

Eliminate waste

© ThoughtWorks 2008



thoughtworks.com/cruise

Build quality in

© ThoughtWorks 2008

Business facing

Technology facing

C
ritiq

u
e
 p

ro
je

c
t

S
u
p
p
o
rt

 p
ro

g
ra

m
m

in
g

From Brian Marick http://www.exampler.com/old-blog/2003/08/21/#agile-testing-project-1, via Poppendieck, 

Implementing Lean Software Development (Addison Wesley, 2006), ch. 8.

Functional 

acceptance tests

Showcases

Usability testing

Exploratory testing

Unit tests

System tests 

integration tests

Non-functional 

acceptance tests
(security, performance, 

deployment)

Manual

Manual / 
automated

Automated

Automated

http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/


thoughtworks.com/cruise

Get feedback as soon as possible

Involve as many people as is reasonable

The cost of change is less when done sooner

- But be careful to avoid churn

Amplify knowledge

© ThoughtWorks 2008



thoughtworks.com/cruise

Make irreversible decisions at the last responsible moment

Make as many of your decisions easy to reverse as possible

Requires information and confidence

Defer commitment

© ThoughtWorks 2008



thoughtworks.com/cruise

Maximise NPV on your investment

Get feedback quickly and adjust

Businesses change fast

Deliver fast

© ThoughtWorks 2008



thoughtworks.com/cruise

There is no process that can’t be improved

Everybody is responsible for getting software released

Involve all stakeholders from the start

Trust your team

Provide entrepreneurial leadership

Respect people (over process)

© ThoughtWorks 2008



thoughtworks.com/cruise

Only measure globals: cycle time, margin, user satisfaction

The only goal that matters is delivered business value

Everybody needs to have a stake

Optimise the whole

© ThoughtWorks 2008



thoughtworks.com/cruise

Automate your deployment process pragmatically

Deploy frequently – if it hurts do it more

Check in no less than once a day and ensure a successful build

Only build your binaries once – separate out configuration

Anti-patterns

Trying to automate past the point of diminishing returns

There are exceptions – C++ compilers, embedded hardware with 
limited resources, dynamic languages

Eliminate waste: practices

© ThoughtWorks 2008



thoughtworks.com/cruise

Eliminate waste

© ThoughtWorks 2008

See the moment a defect occurs

See who did it



thoughtworks.com/cruise

Do continuous integration

Smoke-test your deployments

Make it easy to get binaries

Automate build, test and deployment

Make it easy to see what’s happening

Standardise the process of making changes

Anti-patterns

Fragile tests

Mock overload (testing behaviour, not intent)

Missing part of the quadrant

Build quality in: practices

© ThoughtWorks 2008



thoughtworks.com/cruise © ThoughtWorks 2008

Testers can find and get good installers

Build quality in



thoughtworks.com/cruise

Cruise as andon (information radiator)

Build quality in

© ThoughtWorks 2008



thoughtworks.com/cruise

Maintain a single source repository

Start deploying in a production-like environment from day one

Have a support and an operations person on your team

Get useful metrics: cyclomatic complexity + code coverage, 
npath complexity, duplicates, efferent and afferent couplings

Fail the build or warn when metrics get worse

Anti-patterns

Useless metrics: lines of code, number of classes

Amplify knowledge: practices

© ThoughtWorks 2008



thoughtworks.com/cruise

Amplify knowledge

© ThoughtWorks 2008

See metrics



thoughtworks.com/cruise

It should be possible to easily back out every change

Use blue/green deployments or virtual machines

I should know exactly what’s in every environment:

Universal configuration management

Anti-patterns

Ultimate configurability

Locking down configuration

Undocumented configuration

Defer commitment: practices

© ThoughtWorks 2008



thoughtworks.com/cruise

Deployment pipelines

© ThoughtWorks 2008



thoughtworks.com/cruise

See code go through UAT, performance testing, staging...

...and even into production

Deployment pipelines

© ThoughtWorks 2008



thoughtworks.com/cruise

Constant, dependable heartbeat of rapid, regular releases

The more often you release, the fewer changes between releases

Keep your feedback cycles fast: parallelise tests, use VMs, grids

Anti-patterns:

Lots of builds, but no traceability or synchronization

Not listening to the build

Deliver fast: practices

© ThoughtWorks 2008



thoughtworks.com/cruise

Zero configuration build cloud

Deliver fast

© ThoughtWorks 2008



thoughtworks.com/cruise

Create a deployment strategy at the beginning of the project

Get all stakeholders together in a room to participate

Improve your process continuously

Anti-patterns

Imposed corporate processes and procedures

Release management is “not my problem”

Release management as a line item

Respect people: practices

© ThoughtWorks 2008



thoughtworks.com/cruise

Only count work that has been showcased from staging as done

Non-functional testing through instrumentation and incremental 
delivery

Manage changes with automation

Anti-patterns

Silos – incentives not aligned with business value

Manage changes with heavy process

Optimise the whole

© ThoughtWorks 2008



thoughtworks.com/cruise

0. Version control everything

1. Automated build / continuous compilation

2. Automated unit tests

3. Automated functional tests

4. Automated deployment to UAT / performance testing etc.

5. Automated deployment to staging and production

Maturity model

© ThoughtWorks 2008



thoughtworks.com/cruise

Principles of Lean

Practices derived from the principles

Key thoughts:

• If it isn’t delivering value to your users, it isn’t done

• Involve everyone from the beginning

• Continually improve your process: PDSA

• If it hurts, do it more: deploy often, release often

• Be able to revert every change

Summary

© ThoughtWorks 2008



thoughtworks.com/cruise

Download it today for free: http://thoughtworks.com/cruise

Thanks to: Richard Durnall, Jann Thomas, John Johnston, Michael 
Robinson, Jason Yip, Chris Leishman

Thank you!

© ThoughtWorks 2008

http://thoughtworks.com/cruise


© CMC Media Inc. 2008© CMC Media Inc. 2008

Questions and Answers

Please post your questions now using 

the “Ask a Question” box 

on left side of the screen

View other Webcasts in the Series at www.cmcrossroads.com/wc


